


Compute the volume of the solid that results from revolving one hump of $y = \sin(\alpha x)$ around the x-axis.

Compute the volume of the solid that results from revolving one hump of $y = \sin(\alpha x)$ around the x-axis.

Volume

$$= \int_{0}^{\frac{\pi}{a}} \pi y^{2} dx$$

$$= \int_{0}^{\frac{\pi}{\alpha}} \pi \sin^{2} \alpha x \, dx$$

$$= \pi \int_{0}^{\frac{\pi}{\alpha}} \frac{1 - \cos 2\alpha x}{2} dx$$

$$=\frac{\pi}{2}\left(\left.\chi-\frac{\sin 2\alpha \chi}{2\alpha}\right)\right|_{0}^{\frac{\chi}{\alpha}}$$

$$=\frac{\pi}{2}\left(\frac{\pi}{a}-\frac{\sin 2\pi}{2a}\right)$$

$$= \frac{\pi}{2} \left(\frac{\pi}{a} - 0 \right)$$

$$= \frac{\mathcal{I}^2}{2a}$$

$$u=2a\chi$$
 $d_{m}=2ad\chi$

$$\chi = \frac{\pi}{a} \Rightarrow u = 2\pi$$

Joel substituted for n=ax

before using the half angle formula and integrating.